Контактно сорбционный метод очистки воды. Интересные и нужные сведения о строительных материалах и технологиях

Сорбционная очистка - наиболее приемлемая группа методов для глубокой очистки стоков от растворенных органических примесей на целлюлозно-бумажных, химических, нефтехимических, текстильных и других производствах.

Очистка методами сорбции может вестись самостоятельно, либо как метод предварительной очистки перед биологической очисткой стоков. Предварительная очистка сточных вод методом сорбции может понадобиться, если загрязнители являются сильнотоксичными или трудно окисляются биологическим путем.

Пределы использования сорбционных методов составляют от 5 до 1000 мг/л по содержанию загрязняющих веществ.

Локальные установки для сорбционной очистки оправданы в случаях, когда концентрации загрязнителей близки к верхнему пределу и вещество хорошо адсорбируется при небольшом удельном расходе сорбента.

Доочистка методом сорбции имеет смысл при невысоком содержании загрязняющих веществ - до 100 мг/л.

Адсорбцию как метод очистки сточных вод применяют для удаления из стоков гербицидов, пестицидов, фенолов, ароматической органики, поверхностно-активных веществ, синтетических красителей и проч.

Сорбция может применяться и как метод извлечения из растворов ценных веществ для последующей их утилизации. Очищенные стоки могут использоваться в системах технического оборотного водоснабжения.

Достоинства сорбционной очистки :

  • возможность избирательного поглощения веществ из многокомпонентных растворов;
  • высокая эффективность очистки - до 80-95% .

Ограничение применения метода - очистка высокотемпературных сточных вод, несмотря на их перспективность при очистке воды от продуктов коррозии и других загрязнений горячих стоков. Причина – в дефицитности и высокой стоимости термостойких сорбентов.

Поэтому разработка и синтез новых видов сорбентов для очистки стоков с высокой температурой - актуальная практическая задача.

Сорбционный фильтр Argel S

Для доочистки производственных и хозяйственно-бытовых сточных вод могут применяться фильтры Argel S , реализующие принцип сорбционной очистки.

Сточная вода движется внутри корпуса фильтра через загрузку нисходящим потоком, и в процессе очистки освобождается от специфических компонентов.

Производитель предлагает две модификации фильтров Argel S .

  1. Фильтры первой группы очищают сточные воды от тяжелых металлов, ионов двух- и трехвалентного железа, радионуклидов, эмульгированных нефтепродуктов, СПАВ, органических красителей и проч. В качестве сорбента в фильтрах первой группы применяется активированный уголь марки МИУ-С2.
  2. Фильтры Argel S второй группы реализуют двухступенчатую фильтрацию. Сорбентом первой ступени фильтрации является сокирнит, второй ступени - уголь МИУ-С2. Фильтры Argel S второй группы могут применяться для очистки стоков от расширенного перечня загрязнителей: аммонийного азота, радионуклидов и тяжелых металлов, трехвалентного железа, эмульгированных и неэмульгированных нефтепродуктов, органических красителей, СПАВ и др.

Области применения сорбционных фильтров Argel S - очистка сточных воды в коммунальном хозяйстве, нефтехимической и горнодобывающей промышленности, металлургии, дорожном строительстве.

очитка сточный вода адсорбция

Сорбция является одним из универсальных способов глубокой очистки от растворенных органических веществ сточных вод таких производств, как коксохимические, сульфат-целлюлозные, хлорорганические, синтеза полупродуктов, красителей и др. Для удаления органических веществ, определяемых величиной ВПК, пригодна биологическая очистка. Для удаления стойких органических веществ, определяемых ХПК, биологическая очистка не является эффективной. Даже хорошо очищенные сточные воды после биологической очистки имеют загрязнения органическими веществами, величина которых по ХПК равна 20--120 мг/л. Эти вещества включают танины, лигнины, эфиры, протеиновые вещества и другие органические загрязнения, имеющие цветность и запахи, пестициды, такие, как ДДТ, и др. Сорбционная очистка сточных вод используется как до биологической очистки, так и после нее. В последнее время исследуется возможность замены биологической очистки производственных и бытовых сточных вод сорбционной очисткой.

В отличие от биохимического процесса колебания температуры и влияние токсичности для сорбции не имеют такого большого значения, кроме того, легче решаются вопросы удаления осадка и автоматизации, сложные для станций биологической очистки. Применяются три типа сорбции.

Адсорбция -- поглощение вещества поверхностью чаще всего твердого поглотителя. Аппараты, в которых происходит адсорбция, называются адсорберами.

Абсорбция -- поглощение, сопровождающееся диффузией поглощенного вещества в глубь сорбента с образованием растворов. В большинстве случаев абсорбции поглотителем является жидкость. Аппараты, в которых происходит этот процесс, называются абсорберами, или скрубберами.

Хемосорбция -- адсорбция, сопровождающаяся химическим воздействием поглощаемого вещества с сорбентом. Хемосорбция применяется в технике при поглощении диоксида углерода, оксида азота, аммиака и т. п. Процесс осуществляется обычно в башнях, заполненных пористой насадкой, через которую фильтруется очищаемая сточная вода.

В качестве сорбентов применяют различные искусственные и природные пористые материалы: активированные угли, золу, коксовую мелочь, силикагели, алюмогели, активные глины и земли. Последние составляют большой класс природных сорбентов, которые обладают значительной поглотительной способностью без всякой дополнительной обработки, что является их преимуществом перед искусственными сорбентами.

Наиболее важными показателями сорбентов являются пористость, структура пор, химический состав.

По структуре пористой поверхности сорбенты разделяются на мелкопористые, крупнопористые и смешанные. Величина сорбционного потенциала выше у мелкопористых сорбентов, однако, они не всегда оказываются доступными для поглощения загрязнений сточных вод. Активированные угли, как правило, являются доступными для поглощения молекулярно-растворенных веществ. Природные сорбенты (туфы, диатомиты) способны поглощать группы молекул.

Благодаря химическому сродству сорбентов к извлекаемым загрязнениям наиболее часто встречающиеся углеродные сорбенты целесообразно применять для удаления из воды недиссоциируемых или слабо-диссоциируемых веществ органического происхождения. Активность сорбента характеризуется количеством поглощаемого вещества в кг на 1 м 3 или 1 кг сорбента; активность может быть выражена в долях или процентах от массы сорбента.

Статической активностью сорбента называется максимальное количество вещества, поглощенного к моменту достижения равновесия единицей объема или массы сорбента при постоянной температуре воды и начальной концентрации вещества.

Динамической активностью сорбента называется максимальное количество вещества, поглощенного единицей массы или объема сорбента до момента появления сорбируемого вещества в фильтрате при пропускании сточной воды через слой сорбента. Динамическая активность всегда ниже статической. Так, например, в адсорберах промышленного типа динамическая активность активированных углей составляет 45 -- 60% статической. Адсорбция гранулированным активированным углем осуществляется в насыпных фильтрах или в аппаратах с псевдоожижением угля. Фильтрование через неподвижный слой активированного угля в насыпных фильтрах производится сверху вниз или снизу вверх (рис. 1.).

Рис. 1. Схема адсорбционной доочистки с использованием активированного антрацита Потоки: I - сточная вода на очистку; II - регенерированный антрацит; III - активированный антрацит; IV- сточная вода на ионообменные фильтры; V - свежий антрацит на активацию; VI - водяной пар; VII - природный газ; VIII- дымовые газы; 1 - адсорбер; 2, 3- печь соответственно регенерации и активации антрацита

В этом случае предусматривается предварительная очистка сточной воды от взвешенных веществ на песчаных фильтрах, так как присутствие их в количестве более 10 г/м 3 вызывает быстрое нарастание потерь напора в сорбционных фильтрах. Наиболее часто практикуется последовательная работа сорбционных фильтров со скоростями фильтрования воды от 1--2 до 5--6 м/ч через загрузку с размером зерен от 1, 5--2 до 5-- 6 мм. Фильтры с неподвижным слоем угля наиболее рационально применять при регенеративной очистке цеховых сточных вод. При десорбции, осуществляемой химическими растворителями или паром, достигается не только восстановление сорбционной способности угля, но и извлечение продукта, имеющего техническую ценность.

В аппаратах с псевдоожижением активированного угля сточная вода подается снизу вверх со скоростями 7--10 м/ч. При этом уголь с размером частиц 0, 5--1 мм перемешивается восходящим потоком воды и по мере насыщения перемещается от верхних тарелок к нижним. Мелкие взвешенные частицы загрязнений сточных вод выносятся из адсорбера и могут быть удалены совместно со стоками других цехов на общих очистных сооружениях. Такая очистка сточных вод предъявляет повышенные требования к активированному углю, поскольку он подвергается значительному истиранию при псевдоожижении и гидротранспортировании.

Противоток в схеме организован переключением аппаратов с недонасыщенным углем навстречу сточной воде. Фильтрующий слой на внутреннюю поверхность фильтра намывается из бака-суспензатора с помощью насоса.

Эта схема была испытана для очистки сточной воды от тринитротолуола с начальной концентрацией 50 г/м 3 и конечной не более 0, 5 г/м 3 . При поступлении воды 2 м 3 /ч на 1 м 2 фильтрующей поверхности наилучшими вариантами являются трехступенчатая адсорбция при расходе угля марки ОУ на каждой ступени 2, 5 кг/м 2 (0, 13 кг угля/м 3 воды) и частоте перезарядки адсорберов / = 2, 5 раза в сутки или четырехступенчатая адсорбция при расходе угля марки КАД 5 кг/м 2 (0, 193 кг угля/м 3 воды) и /=1, 85 раза в сутки

Такая схема обеспечивает высокое качество очищенной воды, как по содержанию взвешенных веществ, так и по содержанию растворенных органических загрязнений. В системе очистки участвуют небольшие количества воды и угля, что предопределяет компактность аппаратуры.

Операции адсорбции и сепарации воды и угля совмещаются. Уголь при этом значительно меньше подвержен истиранию.

Для восстановления сорбционной емкости отработанный в процессе адсорбции активированный уголь обычно подвергается регенерации химическими растворителями, паром или термообработке.

Термическая регенерация активированного угля осуществляется в многотопочных печах. Общее время пребывания угля в печах колеблется от 30 до 60 мин при температуре от 600 до 900° С. Потери угля при этом составляют от 5 до 10%.

Сущность метода: сорбционная очистка сточных вод производства - это процесс поглощения частиц загрязнителя различными фильтрующими материалами. Основным критерием при выборе того или иного фильтрующего материала являются сорбционные свойства материала, так как именно от них зависит эффективность очистки сточных вод. Среди критериев выбора фильтрующего материала можно назвать несколько основных свойств материала:

Механическая прочность материала;

Химическая устойчивость материала;

Сорбционные свойства материала.

Сорбционные методы можно условно поделить на две разновидности:

1) сорбция на активированном угле (адсорбционный обмен);

2) сорбция на ионитах (ионный обмен).

Достоинства метода:

1) очистка до ПДК;

2) возможность совместного удаления различных по природе примесей;

3) отсутствие вторичного загрязнения очищаемых вод;

4) возможность возврата очищенной воды.

Недостатки метода:

1) дороговизна и дефицитность сорбентов;

2) громоздкость оборудования;

3) большой расход реагентов для регенерации сорбентов;

4) образование вторичных отходов, требующих дополнительной очистки.

4. Доочистка сточных вод фильтрованием через неподвижный слой сорбента

Двухступенчатая доочистка сточных вод осуществляется последовательно на песчаных и сорбционных фильтрах, которые устанавливаются после других сооружений очистки. Технология очистки предназначена для получения такого качества воды, которое позволяет использовать обеззараженную воду в технологических процессах промышленных предприятий. Доочистке на фильтрах подвергаются все загрязнения, находящиеся в составе сточных вод.

Для доочистки сточных вод использовались активированные угли марок АГ-5 и КАД йодный, выпускаемые промышленностью, а также торфяной активированный уголь (ТАУ).

Характеристика активированных углей, используемых для доочистки сточных вод, приведена в табл.

Характеристика активированных углей

Марка угля

Суммарная пористость, см 3 /г

Удельный объем макропор, см 3 /г

Удельный объем переходных пор, см 3 /г

Удельный объем микропор, см 3 /г

Порозность загрузки

Насыпной вес, г/см 3

Диаметр зерен, мм

Удельная поверхность переходных пор, м 2 /г

КАД йодный

Показатели качества сточных вод (до и после доочистки) приведены в табл.

Показатели качества сточных вод после доочистки на фильтрах

Показатель

Концентрация загрязнений до применения фильтров, мг/л

Концентрация загрязнений после доочистки, мг/л

на песчаных фильтрах

применение сорбционного фильтра, загруженного углем АГ-5

применение сорбционного фильтра, загруженного углем КАД йодным

применение сорбционного фильтра, загруженного ТАУ углем

Взвешенные вещества

отсутствуют

отсутствуют

отсутствуют

БПК поли

Растворимый кислород

На рис. 6 приведена схема доочистки сточных вод на двухступенчатых фильтрах. реагентный сточный фильтрование

Рис. 6. Схема доочистки сточных вод: 1 – вода после сооружений биологической очистки; 2 – приемный резервуар; 3 – насосная установка; 4 – устройство для перемешивания воды; 5 – распределительная камера; 6 – фильтр, загруженный песком; 7 – приемный резервуар; 8 – насосная установка; 9 – устройство для перемешивания воды; 10 – распределительная камера; 11 – сорбционный фильтр; 12 – промывной насос; 13 – резервуар промывной воды; 14 – сброс очищенной воды

Технологическая схема двухступенчатой доочистки сточных вод включает в себя приемный резервуар 2, насосную установку 3, с помощью которой вода подается в распределительную камеру 5, откуда самотеком поступает на песчаные фильтры 6. Очищенная на песчаных фильтрах вода собирается в приемный резервуар 7, откуда насосной установкой 8 перекачивается в распределительную камеру 10. На сорбционные фильтры 11 вода из распределительной камеры подается снизу вверх. При подаче сточных вод в распределительные камеры 5 и 10 часть воды переливается и отводится по трубопроводам 4 и 9 в приемные резервуары, где происходит перемешивание исходной жидкости. Эффективность очистки воды 96–99 %

Первая ступень фильтра загружена песком с диаметром зерен 1,8 мм и высотой 0,5–1 м. Скорость фильтрования составляет 10 м/ч. Период между регенерацией загрузки фильтра зависит от концентрации веществ и составляет 9–15 ч. Грязеемкость фильтра находится в пределах от 2,6 до 6,6 кг/м 3 . Промывка фильтра производится водой с интенсивностью 18–20 л/см 2 . Продолжительность промывки составляет 7 мин. Объем промывной воды – 4 % от объема очищенной воды. Для фильтров первой ступени можно использовать водовоздушную промывку с интенсивностью подачи воды 12 л/см 2 и интенсивностью подачи воздуха 16–19 л/см 2 . Продолжительность водовоздушной промывки составляет 6 мин.

Сорбционный фильтр загружен сорбентом на высоту 3,2 м, скорость фильтрования воды – 2–2,5 м/ч. Крупность зерен загрузки 1–2 мм. Интенсивность промывки сорбционных фильтров 6–12 л/см 2 . Продолжительность промывки принимается 7–10 мин. и уточняется в процессе эксплуатации фильтров. Фильтроцикл составляет 24 часа. Продолжительность работы сорбционных фильтров до регенерации – от 3 до 4 суток. Регенерация загрузки сорбционных фильтров выполняется тогда, когда ХПК (химическое потребление кислорода) после фильтрования на второй ступени превышает 15 мг/л.

Расчет величины рН сточных вод

Количество кислотных компонентов в стоках составляет:

H 2 SO 4 = 500 мг/л

HCl = 500 мг/л

M (H 2 SO 4) = 2·1,008+32,064+4·15,999 = 98,076 г/моль

M (HCl) = 1,008+35,453 = 36,461 г/моль

[Н + ] = / M = 500 / 98,076 = 5,1 моль/м 3

[Н + ] = / M = 500 / 36,461 = 13,7 моль/м 3

pH = -1g =-1g (([Н + ] H2SO4 + [Н + ] HCl) /Q ст)

где Q ст – производительность стока, Q ст = 2 м³/час

pH = -1g ((5,1 + 13,7) / 2) = - lg 9,4 = - 0,97

Таким образом, рН стоков равен 0,97 что говорит об избытке кислых компонентов (кислот).

1м 3 =1000дм 3 =1000л

1мг/л=1мг/дм 3 =1г/м 3

Расход реагента в граммах на 1г иона металла,

Среди существующих методов водоочистки сорбционный способ является одним из самых распространенных. Что это такое сорбционная очистка воды , и для чего она нужна? Данная процедура относится к эффективным способам глубокой очистки жидкости, позволяющим убрать вредные примеси и химические соединения посредством связывания частиц на молекулярном уровне. Уникальность такой фильтрации состоит в возможности удалить из воды органику, не поддающуюся отделению другим образом.

Сорбционный метод очистки воды с использованием высокоактивных сорбентов позволяет получить жидкость, в которой почти нет остаточного концентрата. Высокая активность сорбентов делает возможным взаимодействие с веществами, независимо от их концентрации: даже при малых дозах вредных примесей этот способ будет работать.

Понятие адсорбции и ее эффективность

Термин «адсорбция» означает процесс поглощения загрязнителей в воде поверхностью твердых тел. В его основе лежит принцип пропускания молекул таких примесей через особую пленку, окружающую адсорбент, и их притягивание к его поверхности. Вышеназванный процесс происходит, если жидкость для очистки перемешивается.

Наибольшего эффекта такой способ позволяет добиться при малой концентрации вредных веществ, что наблюдается в случае сильной очистки. Все, что не осело на предыдущих фильтрах, удаляется сорбцией, при этом на выходе получается чистая вода.

Скорость процесса и его эффективность зависят от ряда факторов:

  • Структуры сорбента.
  • Температуры.
  • Концентрации загрязнителя и его состава.
  • Активности реакции среды.

При современных установках лучшим вариантом сорбента, эффективно очищающим воду, признается активированный уголь разных типов. Чем больше данное вещество имеет микропор, тем выше качество очистки воды методом угольной сорбции.

Специалисты компании «Русватер» помогут подобрать оптимальный вариант фильтрующих установок, работающих по принципу сорбции, что даст возможность организовать эффективную водоподготовку и очистку воды от различных примесей, независимо от ее назначения.

Фильтрация воды через активированный уголь должна исключать попадание на сорбент жидкости с растворенными взвесями и коллоидными частицами, так как они портят поверхность угля, экранируя его поры. Сорбент, пришедший в негодность из-за такого воздействия, восстанавливают либо меняют.

Для дехлорирования воды применяются сорбционные фильтры на основе активированного угля, делающие воду лучше, а также позволяющие очистить ее от азотистых включений. Совместное использование сорбции и озонирования в разы усиливает действенность очистки с одновременным повышением возможностей активированного угля. При использовании в роли сорбента природных минералов с Ca и Mg, а также окислов алюминия, из воды удаляются соединения фосфора.

Для чего нужна сорбция и где она используется?

Фильтрация воды углем с помощью сорбционных установок различного типа применяется для глубокой очистки жидкости в замкнутых системах, включая очистку канализационных стоков от органики.

Среди существующих методик тонкой очистки сорбция признается одним из наиболее эффективных способов, позволяющим удалить из воды органические вещества без значительных затрат. Технология пользуется популярностью в случаях необходимости очистить стоки от красителей, а также убрать иные гидрофобные соединения.

Данный способ не подходит, если в стоках присутствуют только неорганические загрязнители либо растворенная в них органика имеет низкомолекулярную структуру. Сорбция может применяться в комплексе с биологической очисткой или выступать самостоятельным средством.

Сорбционная очистка воды позволяет освободить жидкость от привкуса сероводорода и хлора и убрать неприятные запахи. Эффективность использования активированного угля в роли сорбента объясняется его структурой: фильтрацию выполняют имеющиеся микропоры. Получают активированный уголь из древесины, торфа, продуктов животного происхождения либо ореховых скорлупок. Нанесение на поверхность активированного угля частиц ионов серебра защищает материал от поражения разного рода микроорганизмами.

В большинстве случаев активированный уголь применяют для очистки воды от органики и для проведения процесса водоподготовки перед обратным осмосом. Сорбция позволяет эффективно убрать из воды хлор, улучшив ее качества. При этом таким методом хлор удаляется также для подготовки технической воды, применяемой для гигиенических целей.

Наши системы угольной очистки

Не менее востребованы сорбционные фильтры в общей системе обезжелезивания. Сорбционная очистка воды от железа необходима для удаления его твердых частиц после окисления до нерастворимых оксидов.

Системы сорбционной очистки могут быть разными. Выбор конкретного варианта происходит после проведения анализа воды и установления содержащихся в ней примесей. Такая работа должна проводиться профессионалами, поэтому наши специалисты всегда готовы помочь вам в этом.

Выбор сорбентов . Ассортимент сорбентов для предварительной очистки воды, выпускаемых промышленностью, весьма разнообразен. Для очистки воды от органических веществ используют активированные угли, гелевые и макропористые аниониты и др. Активированные угли обладают замедленной кинетикой сорбции из растворов, что требует больших площадей фильтрации, плохой регенерируем остью с помощью реагентов (остаточная емкость после первой регенерации значительно меньше половины исходной), механической непрочностью, высокой зольностью.

Аниониты, особенно макропористые, свободны от многих перечисленных недостатков. Первичный выбор лучших из них проводят в статических условиях при контакте сорбентов с модельными растворами или с данной водой в течение часа.

После отбора лучших образцов (в данном случае ими оказались отечественные сорбенты полимеризационного типа АВ-171 и конденсационного типа ИА-1) проводят кинетические исследования. Их целью является определение характера стадии, лимитирующей процесс, нахождение коэффициентов диффузии и времени установления равновесия. Стадию, лимитирующую процесс, определяют по следующему признаку: если перемешивание раствора способствует ускорению сорбции, это свидетельствует о преимущественном влиянии внешней диффузии; прямое доказательство внутридиффузионного механизма дает опыт с «прерыванием». Если после перерыва возобновить сорбционный процесс и сорбционная активность твердой фазы возрастет, можно с уверенностью говорить о внутридиффузионном характере процесса.

Сорбция гумусовых веществ . Внутридиффузионная кинетика, по данным, лимитирует сорбцию гумусовых веществ, т. е. сорбционную предварительную очистку воды.

Анализ этого уравнения показывает, что потеря защитного действия, выраженная в линейных или объемных единицах сорбента, тем больше (а рабочий период колонки тем меньше), чем больше скорость потока, радиус зерен сорбента и заданная глубина очистки.

Из кинетических опытов определяют коэффициенты диффузии и время установления равновесия в системах ионит-раствор и строят изотермы сорбции. Изотермы сорбции гуминовых и фульвокислот анионитами ИА-1 и АВ-171 описываются уравнением Ленгмюра.

В работах сопоставлены результаты экспериментального определения сорбционнои емкости до проскока гумусовых веществ с сорбционной ёмкостью, рассчитанной по уравнениям; расхождения не превышают 10-15%. Изменяя скорость потока, глубину очистки, радиус зерна сорбента и сам сорбент, можно определить потерю времени защитного действия колонны для каждого варианта. В то же время следует помнить, что это возлагает очень большую ответственность на точность определения коэффициентов диффузии и равновесия в системах сорбент - раствор, дающих исходные данные для расчета динамики сорбции.

Итак, наилучшим сорбентом для предварительной очистки воды оказался макропористый анионит ИА-1, работающий в хлор-форме, при рН очищаемого раствора, равном 3,0-3,5. Что касается размера зерен, его выбор ограничен характером дренажной системы и желательной скоростью пропускания воды.

В природных водах присутствуют гуминовые и фульвокислоты. Первые сорбируются хуже, и их «проскок» практически лимитирует процесс очистки. Поэтому величину следует рассчитывать по содержанию в очищаемой воде гуминовых кислот. Если после коагуляционной очистки они отсутствуют, рабочий период сорбционной колонны рассчитывают по содержанию в воде фульвокислот.

То обстоятельство, что сорбция слабодиссоциирующих гуминовой и фульвокислот идет лучше в кислой среде и на анионите в солевой форме, указывает на неионообменный механизм поглощения этих веществ и подсказывает экономически и технологически выгодную схему предварительной очистки воды. Сорбционную колонну с ионитом ИА-1 следует устанавливать после катионита в Н-форме и следующего за ним декарбонизатора. Это освобождает от необходимости подкислять воду, так как она подкисляется самопроизвольно при катионировании. Таким образом, сорбционная колонна становится составной частью обессоливающей установки. При совмещении коагуляционной очистки с сорбционной вода на 80-85% освобождается от органических примесей. Дальнейшая, более глубокая очистка воды от органических примесей проводится на ионитах обессоливающей части установки.

Извлечение других органических веществ . Поверхностные и артезианские воды содержат органические вещества, относящиеся к различным классам соединений. Установлено, что такие вещества, как сахара, белковоподобные вещества, аминокислоты проходят через систему ионитовых колонн и попадают в глубокообессоленную воду. Причем их количество зависит от состава исходной воды и значительно превышает содержание минеральных примесей. Максимальное извлечение этих веществ из воды в ходе ее предварительной очистки сорбционным методом является необходимым.

В работе сопоставлена способность некоторых активированных углей и макропористых анионитов сорбировать различные аналитически определяемые органические соединения, растворенные в природных водах. Для этого через слой сорбента высотой 60 см со скоростью 7 м/ч пропускали по 100 объемов речных вод после их Н-катионирования, создающего наиболее благоприятные условия для сорбции.

Фульвокислоты извлекаются лучше смолами, чем углями, причем емкости ионообменников по фульвокислотам практически одинаковы. Но и в этом случае применение ионита ИА-1 целесообразнее, так как он регенерируется легче и с меньшими расходами реагентов.

Второй очень значительной группой соединений, которые, попадая в глубокообессоленную воду, могут влиять на ее удельное электрическое сопротивление, являются карбоновые кислоты. Для их сорбции наиболее пригодны уголь СКТ-ВТУ-2 и анионит АВ-171. Из этих двух сорбентов предпочтение, безусловно, следует отдать иониту, так как его емкость может быть восстановлена химическими реагентами. Для удаления простых и сложных аминокислот также следует применять анионит АВ-171.

Простые и сложные сахара, не влияющие на удельное электрическое сопротивление, обессоленной воды, в значительной степени сорбируются только углем БАУ. Поэтому при выборе сорбентов для очистки воды следует руководствоваться не только величиной их емкости и возможностью ее восстановления, но и необходимостью удаления из воды того или иного соединения.

Для ориентировочной оценки распределения органических веществ в слоях указанных сорбентов были сняты соответствующие выходные кривые. Загрузка ионитов в хлор-форме равнялась 1 л при высоте слоя 60 см; скорость протекания раствора 10 м/ч.

Фильтрат для анализа отбирали непрерывно фракциями по 10 л каждая. Продолжительность рабочего периода колонны выбрана равной 200 приведенным объемам; рН пропускаемой воды создавали предварительным катионироваиием исходной воды. Применяя различные сорбенты и их сочетания, можно удалить значительную часть органических веществ, растворенных в воде. Однако получить воду, полностью освобожденную от органических веществ с помощью перечисленного набора средств, вряд ли возможно.

Содержание и соотношение таких органических неэлектролитов, как сахара, белки, эфиры и т. п., изменяются не только от одной географической зоны к другой, но и в пределах одного региона. Поэтому нельзя ожидать, что при одинаковых технологических схемах и режимах деминерализации обессоленные воды будут совпадать по количественному и качественному содержанию органических веществ. В связи с этим следует относиться с осторожностью к попыткам нормирования сухого остатка высокоомной воды без учета состава исходной.

Удаление железа (обезжелезивание) . Железистыми называют воды, содержащие более 1 мг/л железа. Катионит сорбирует ионы двухвалентного железа примерно так же, как и ионы кальция, а ионы трехвалентного железа - еще более эффективно. Можно было ожидать, что при ионообменном обессоливании вода будет одновременно и «обезжелезиваться». Этому процессу мешают, однако, некоторые физико-химические особенности соединении железа, присутствующих в природных водах.

В открытых водоемах, хорошо аэрируемых, значительная часть железа находится в виде соединений Fe разной степени гидролизованности.

При коагуляционной и последующей сорбционной очистках вода освобождается не только от окрашенных (главным образом, гумусовых соединений), но и от коллоидных и комплексных форм железа. Таким образом, очистка от органических веществ является одновременно актом обезжелезивания воды.

Предприятиям, потребляющим особо чистую обессоленную воду, рекомендуется всюду (где возможно) получать ее из подземных вод, свободных, как правило, от органических загрязнений. Известно, что более 25% всех водопроводов получают подземную воду с содержанием железа от 1 до 5 мг/л.

В подземных водах, лишенных кислорода, железо большей частью находится в форме раствора бикарбоната частично гидролизованного. Если бы это вещество поступало на катионит в неокисленном и негидролизованном виде или не окислялось бы в самом катионитовом фильтре, можно было бы ожидать практически полного обмена ионов железа на ионы водорода. Однако наряду с реакцией ионного обмена, скорость которой определяется диффузионными процессами, идут реакции гидролиза солей железа, окисления и перехода в слабодиссоциирующие и практически нерастворимые соединения, способные к образованию коллоидов. Совокупность таких процессов приводит к тому, что вода, содержащая, например, в равновесном состоянии 0,16 мг/л железа в ионной форме, может характеризоваться общим содержанием железа на уровне 2 мг/л. Катионит же поглотит только ионную форму железа и растворит с поглощением часть наименее стойких продуктов гидролиза.

Выделение ионов водорода при работе катионита могло бы сдерживать реакцию и даже сдвигать ее влево, тем более, что количество ионов водорода в Н-катионированной воде определяется общим содержанием солей, которое практически на два порядка больше количества ионов железа в воде.

По мере срабатывания верхних слоев катионита два обстоятельства будут способствовать сдвигу реакции вправо: наличие в слое ионов Fe(II), каталитически ускоряющих их превращение в ионы Fe(III), и частичное поглощение катионитом ионов водорода, обменивающихся на ионы натрия и кальция, которыми заполнен отработанный слой смолы. Образующиеся в этих условиях гидроксид Fe(III) и другие продукты гидролиза уже не будут участвовать в ионном обмене и транзитом пройдут в Н-катионированную воду, так же, как и та часть подобных соединений железа, которая присутствовала в исходной воде.

Количественное описание этих процессов пока затруднительно. В то же время присутствие железа в неионной форме в Н-катионированной и обессоленной водах удовлетворительно объясняется предложенной концепцией и свидетельствует о необходимости удаления железа из железистых подземных вод перед их подачей на обессоливающую ионообменную установку. Приведенное выше уравнение подсказывает основные пути удаления железа из воды. Это аэрация (насыщение кислородом) и подщелачивание (связывание ионов водорода). В бикарбонатных водах последнее проходит самопроизвольно с выделением стехиометрического количества диоксида углерода. Аэрацию можно проводить продувкой воздухом, разбрызгиванием воды в воздухе или подачей озона; в качестве других окислителей можно использовать активный хлор, перманганат калия. Под действием окислителей иониты «стареют», поэтому желательно проводить обезжелезивание безреагентным методом.

Удалению железа из подземных вод посвящена монография, в которой обобщены как теоретические, так и технологические аспекты проблемы. Учитывая специфику получения сравнительно небольших объемов особо чистой обессоленной воды для производственных иужд и специфику самих производств, потребляющих такую воду, следует остановиться на методе упрощенной аэрации с последующим фильтрованием.

Над открытым фильтром через отверстия в подающих трубах разбрызгивается вода. Толщина слоя песка в фильтре обычно не менее 1,2 м, а размер зерен от 0,8 до 1,6 мм. Большей грязеемкостью отличаются фильтры с двухслойной загрузкой общей толщиной 1,2-1,5 м и толщиной верхнего слоя 0,5 м. Для нижнего слоя используют кварцевый песок размером зерен 0,8-1,2 мм, а для верхнего - антрацитовую крошку размером 0,9-2,4 мм. Скорость фильтрования иа открытых фильтрах достигает 10 м/ч. Как правило, с уменьшением скорости пропускания воды грязеемкость фильтров повышается, и поэтому открытые фильтры надо рассчитывать на скорость, не превышающую 5-7 м/ч.

В зависимости от принятой скорости фильтрования, исходного содержания железа в воде и других факторов, продолжительность работы фильтров, естественно, различна. При скорости фильтрования 5-7 м/ч и исходном содержании железа в воде 3-4 мг/л цикл работы установки 60-100 ч. После этого фильтры промывают противотоком интенсивностью 15-18 л/(с-м2) в течение 10-15 мин.

Объем промывных вод для фильтров на участке обезжелезивания воды достигает 4% от объема очищенной воды. Когда работа обезжелезивающей установки данного типа хорошо отлажена, содержание железа в фильтрате составляет 0,05-0,1 мг/л.

В отличие от дистиллята, содержащего до 5 мкг/л железа, технический конденсат бывает обогащен продуктами коррозии. При получении из такого конденсата особо чистой обессоленной воды необходимо предварительное обезжелезивание. Для этого используют сульфоугольные фильтры, работающие с эффективностью 25-50%, или более эффективные магнетитовые фильтры, намывные целлюлозные фильтры, намывные ионитовые фильтры (носящие за рубежом название powdex). Предложены анионитовые фильтры, где удаление железа основано на коагулирующем действии анионита в ОН-форме. Намывные ионитовые фильтры работают с эффективностью, приближающейся к 100% за счет практически мгновенной кинетики процесса. Здесь наряду с сорбцией ионов из жидкой фазы происходит механическое задержание частиц твердой фазы, коагуляция и образование комплексов с анионитом, если для намывного слоя берут смесь катионов и анионообменников.

Опыты показали пригодность намывных ионитовых фильтров для извлечения из воды гумусовых веществ, комплексующих железо и другие металлы.

Острота проблемы обезжелезивания как этапа предварительной очистки воды особенно выявилась в связи с необходимостью использования ультрачистой воды для производств микроэлектроники. Для финишной очистки воды перед ее подачей на отмывку деталей приборов используют микрофильтр с порами 0,2 мкм, задерживающий микробные тела. Если из обессоленной воды недостаточно удалено железо на предшествующих этапах, то микрофильтры быстро забиваются.

Умягчение воды. При частичном обессоливании воды электродиализным методом или с помощью обратного осмоса в ряде случаев необходимо предварительно умягчить воду, т. е. освободить ее от катионов кальция и магния, способных при соответствующем анионном составе воды образовывать осадки на ионитных мембранах или на мембранах (волокнах), используемых в аппаратах обратного осмоса.

Умягчение как этап предварительной очистки при обессоливании относительно небольших масс воды целесообразно проводить ионообменным способом. Регенерация катионита, т. е. перевод его в натриевую форму, проводится пропусканием через отработавший слой сорбента 6-10%-ного раствора хлорида натрия и последующей отмывкой водой.

По причинам, которые будут рассмотрены ниже, расход поваренной соли для регенерации превышает стехиометрический в 2,5-5 раз. При работе с водой, имеющей высокое содержание солей, для умягчения целесообразно использовать сильнокислотный катионит типа КУ-2. При этом по сравнению с такими катионнообменниками, как сульфоуголь или КУ-1, довольно значительно сокращается расход соли на регенерацию.