Блок питания: с регулировкой и без, лабораторный, импульсный, устройство, ремонт. Импульсный стабилизатор напряжения — принцип работы стабилизатора Понижающий импульсный стабилизатор напряжения

Схемы самодельных импульсных DC-DC преобразователей напряжения на транзисторах, семь примеров.

Благодаря высокому КПД импульсные стабилизаторы напряжения получают в последнее время все более широкое распространение, хотя они, как правило, сложнее и содержат большее число элементов.

Поскольку в тепловую энергию преобразуется лишь малая доля подводимой к импульсному стабилизатору энергии, его выходные транзисторы меньше нагреваются, следовательно, за счет снижения площади теплоотводов снижаются масса и размеры устройства.

Ощутимым недостатком импульсных стабилизаторов является наличие на выходе высокочастотных пульсаций, что заметно сужает область их практического использования — чаще всего импульсные стабилизаторы используют для питания устройств на цифровых микросхемах.

Понижающий импульсный стабилизатор напряжения

Стабилизатор с выходным напряжением, меньшим входного, можно собрать на трех транзисторах (рис. 1), два из которых (VT1, VT2) образуют ключевой регулирующий элемент, а третий (ѴТЗ) является усилителем сигнала рассогласования.

Рис. 1. Схема импульсного стабилизатора напряжения с КПД 84%.

Устройство работает в автоколебательном режиме. Напряжение положительной обратной связи с коллектора составного транзистора ѴТ1 через конденсатор С2 поступает в цепь базы транзистора ѴТ2.

Элементом сравнения и усилителем сигнала рассогласования является каскад на транзисторе ѴТЗ. Его эмиттер подключен к источнику опорного напряжения — стабилитрону VD2, а база — к делителю выходного напряжения R5 — R7.

В импульсных стабилизаторах регулирующий элемент работает в ключевом режиме, поэтому выходное напряжение регулируется изменением скважности работы ключа.

Включением/выключением транзистора VT1 по сигналу транзистора ѴТЗ управляет транзистор ѴТ2. В моменты, когда транзистор ѴТ1 открыт, в дросселе L1, благодаря протеканию тока нагрузки, запасается электромагнитная энергия.

После закрывания транзистора запасенная энергия через диод VD1 отдается в нагрузку. Пульсации выходного напряжения стабилизатора сглаживаются фильтром L1, СЗ.

Характеристики стабилизатора целиком определяются свойствами транзистора ѴТ1 и диода VD1, быстродействие которых должно быть максимальным. При входном напряжении 24 В, выходном — 15 В и токе нагрузки 1 А измеренное значение КПД было равно 84%.

Дроссель L1 имеет 100 витков провода диаметром 0,63 мм на кольце К26х16х12 из феррита с магнитной проницаемостью 100. Его индуктивность при токе подмагничивания 1 А — около 1 мГн.

Step-down DC-DC преобразователь напряжения на +5В

Схема простого импульсного стабилизатора показана на рис. 2. Дроссели L1 и L2 намотаны на пластмассовых каркасах, помещенных в броневые магнитопроводы Б22 из феррита М2000НМ.

Дроссель L1 содержит 18 витков жгута из 7 проводов ПЭВ-1 0,35. Между чашками его магнитопровода вложена прокладка толщиной 0,8 мм.

Активное сопротивление обмотки дросселя L1 27 мОм. Дроссель L2 имеет 9 витков жгута из 10 проводов ПЭВ-1 0,35. Зазор между его чашками — 0,2 мм, активное сопротивление обмотки — 13 мОм.

Прокладки можно изготовить из жесткого теплостойкого материала — текстолита, слюды, электрокартона. Винт, скрепляющий чашки магнитопровода, должен быть из немагнитного материала.

Рис. 2. Схема простого ключевого стабилизатора напряжения с КПД 60%.

Для налаживания стабилизатора к его выходу подключают нагрузку сопротивлением 5...7 Ом и мощностью 10 Вт. Подбором резистора R7 устанавливают номинальное выходное напряжение, затем увеличивают ток нагрузки до 3 А и, подбирая величину конденсатора С4, устанавливают такую частоту генерации (примерно 18...20 кГц), при которой высокочастотные выбросы напряжения на конденсаторе СЗ минимальны.

Выходное напряжение стабилизатора можно довести до 8...10В, увеличив величину резистора R7 и установив новое значение рабочей частоты. При этом мощность, рассеиваемая на транзисторе ѴТЗ, также увеличится.

В схемах импульсных стабилизаторов желательно использовать электролитические конденсаторы К52-1. Необходимую величину емкости получают параллельным включением конденсаторов.

Основные технические характеристики:

  • Входное напряжение, В — 15...25.
  • Выходное напряжение, В — 5.
  • Максимальный ток нагрузки, А — 4.
  • Пульсации выходного напряжения при токе нагрузки 4 А во всем диапазоне входных напряжений, мВ, не более — 50.
  • КПД, %, не ниже — 60.
  • Рабочая частота при входном напряжении 20 б и токе нагрузки 3А, кГц--20.

Улучшенный вариант импульсного стабилизатора на +5В

В сравнении с предыдущим вариантом импульсного стабилизатора в новой конструкции А. А. Миронова (рис. 3) усовершенствованы и улучшены такие его характеристики, как КПД, стабильность выходного напряжения, длительность и характер переходного процесса при воздействии импульсной нагрузки.

Рис. 3. Схема импульсного стабилизатора напряжения.

Оказалось, что при работе прототипа (рис. 2) возникает так называемый сквозной ток через составной ключевой транзистор. Этот ток появляется в те моменты, когда по сигналу узла сравнения ключевой транзистор открывается, а коммутирующий диод еще не успел закрыться. Наличие такого тока вызывает дополнительные потери на нагревание транзистора и диода и уменьшает КПД устройства.

Еще один недостаток — значительная пульсация выходного напряжения при токе нагрузки, близком к предельному. Для борьбы с пульсациями в стабилизатор (рис. 2) был введен дополнительный выходной LC-фильтр (L2, С5).

Уменьшить нестабильность выходного напряжения от изменения тока нагрузки можно только уменьшением активного сопротивления дросселя L2.

Улучшение динамики переходного процесса (в частности, уменьшение его длительности) связано с необходимостью уменьшения индуктивности дросселя, но при этом неизбежно увеличится пульсация выходного напряжения.

Поэтому оказалось целесообразным исключить этот выходной фильтр, а емкость конденсатора С2 увеличить в 5... 10 раз (параллельным соединением нескольких конденсаторов в батарею).

Цепь R2, С2 в исходном стабилизаторе (рис. 6.2) практически не изменяет длительности спада выходного тока, поэтому ее можно удалить (замкнуть резистор R2), а сопротивление резистора R3 увеличить до 820 Ом.

Но тогда при увеличении входного напряжения с 15 6 до 25 6 ток, протекающий через резистор R3 (в исходном устройстве), будет увеличиваться в 1,7 раза, а мощность рассеивания — в 3 раза (до 0,7 Вт).

Подключением нижнего по схеме вывода резистора R3 (на схеме доработанного стабилизатора это резистор R2) к плюсовому выводу конденсатора С2 этот эффект можно ослабить, но при этом сопротивление R2 (рис. 3) должно быть уменьшено до 620 Ом.

Один из эффективных путей борьбы со сквозным током — увеличение времени нарастания тока через открывшийся ключевой транзистор.

Тогда при полном открывании транзистора ток через диод VD1 уменьшится почти до нуля. Этого можно достигнуть, если форма тока через ключевой транзистор будет близка к треугольной.

Как показывает расчет, для получения такой формы тока индуктивность накопительного дросселя L1 не должна превышать 30 мкГч.

Еще один путь — применение более быстродействующего коммутирующего диода VD1, например, КД219Б (с барьером Шотки). У таких диодов выше быстродействие и меньше падение напряжения при одном и том же значении прямого тока по сравнению с обычными кремниевыми высокочастотными диодами. Конденсатор С2 типа К52-1.

Улучшение параметров устройства может быть получено и при изменении режима работы ключевого транзистора. Особенность работы мощного транзистора ѴТЗ в исходном и улучшенном стабилизаторах состоит в том, что он работает в активном режиме, а не в насыщенном, и поэтому имеет высокое значение коэффициента передачи тока и быстро закрывается.

Однако из-за повышенного напряжения на нем в открытом состоянии рассеиваемая мощность в 1,5...2 раза превышает минимально достижимое значение.

Уменьшить напряжение на ключевом транзисторе можно подачей положительного (относительно плюсового провода питания) напряжения смещения на эмиттер транзистора ѴТ2 (см. рис. 3).

Необходимую величину напряжения смещения подбирают при налаживании стабилизатора. Если он питается от выпрямителя, подключенного к сетевому трансформатору, то для получения напряжения смещения можно предусмотреть отдельную обмотку на трансформаторе. Однако при этом напряжение смещения будет изменяться вместе с сетевым.

Схема преобразователя со стабильным напряжением смещения

Для получения стабильного напряжения смещения стабилизатор надо доработать (рис. 4), а дроссель превратить в трансформатор Т1, намотав дополнительную обмотку II. Когда ключевой транзистор закрыт, а диод VD1 открыт, напряжение на обмотке I определяется из выражения: U1=UBыx + U VD1.

Поскольку напряжение на выходе и на диоде в это время меняется незначительно, то независимо от значения входного напряжения на обмотке II напряжение практически стабильно. После выпрямления его подают на эмиттер транзистора VT2 (и VT1).

Рис. 4. Схема модифицированного импульсного стабилизатора напряжения.

Потери на нагрев снизились в первом варианте доработанного стабилизатора на 14,7%, а во втором — на 24,2%, что позволяет им работать при токе нагрузки до 4 А без установки ключевого транзистора на теплоотвод.

В стабилизаторе варианта 1 (рис. 3) дроссель L1 содержит 11 витков, намотанных жгутом из восьми проводов ПЭВ-1 0,35. Обмотку помещают в броневой магнитопровод Б22 из феррита 2000НМ.

Между чашками нужно заложить прокладку из текстолита толщиной 0,25 мм. В стабилизаторе варианта 2 (рис. 4) трансформатор Т1 образован намоткой поверх катушки дросселя L1 двух витков провода ПЭВ-1 0,35.

Вместо германиевого диода Д310 можно использовать кремниевый, например, КД212А или КД212Б, при этом число витков обмотки II нужно увеличить до трех.

DC стабилизатор напряжения с ШИМ

Стабилизатор с широтно-импульсным управлением (рис. 5) по принципу действия близок к стабилизатору, описанному в, но, в отличие от него, имеет две цепи обратной связи, соединенные таким образом, что ключевой элемент закрывается при превышении напряжения на нагрузке или увеличении тока, потребляемого нагрузкой.

При подаче питания на вход устройства ток, текущий через резистор R3, открывает ключевой элемент, образованный транзисторами VT.1, VT2, в результате чего в цепи транзистор VT1 — дроссель L1 — нагрузка — резистор R9 возникает ток. Происходит заряд конденсатора С4 и накопление энергии дросселем L1.

Если сопротивление нагрузки достаточно большое, то напряжение на ней достигает 12 Б, и стабилитрон VD4 открывается. Это приводит к открыванию транзисторов VT5, ѴТЗ и закрыванию ключевого элемента, а благодаря наличию диода VD3 дроссель L1 отдает накопленную энергию нагрузке.

Рис. 5. Схема стабилизатора с широтно-импульсным управлением с КПД до 89%.

Технические характеристики стабилизатора:

  • Входное напряжение — 15...25 В.
  • Выходное напряжение — 12 В.
  • Номинальный ток загрузки — 1 А.
  • Пульсации выходного напряжения при токе нагрузки 1 А — 0,2 В. КПД (при UBX =18 6, Ін=1 А) — 89%.
  • Потребляемый ток при UBX=18 В в режиме замыкания цепи нагрузки — 0,4 А.
  • Выходной ток короткого замыкания (при UBX =18 6) — 2,5 А.

По мере уменьшения тока через дроссель и разряда конденсатора С4 напряжение на нагрузке также уменьшится, что приведет к закрыванию транзисторов VT5, ѴТЗ и открыванию ключевого элемента. Далее процесс работы стабилизатора повторяется.

Конденсатор С3, снижающий частоту колебательного процесса, повышает эффективность стабилизатора.

При малом сопротивлении нагрузки колебательный процесс в стабилизаторе происходит иначе. Нарастание тока нагрузки приводит к увеличению падения напряжения на резисторе R9, открыванию транзистора ѴТ4 и закрыванию ключевого элемента.

Во всех режимах работы стабилизатора потребляемый им ток меньше тока нагрузки. Транзистор ѴТ1 следует установить на теплоотводе размерами 40x25 мм.

Дроссель L1 представляет собой 20 витков жгута из трех проводов ПЭВ-2 0,47, помещенных в чашечный магнитопровод Б22 из феррита 1500НМЗ. Магнитопровод имеет зазор толщиной 0,5 мм из немагнитного материала.

Стабилизатор несложно перестроить на другое выходное напряжение и ток нагрузки. Выходное напряжение устанавливают выбором типа стабилитрона VD4, а максимальный ток нагрузки — пропорциональным изменением сопротивления резистора R9 или подачей на базу транзистора ѴТ4 небольшого тока от отдельного параметрического стабилизатора через переменный резистор.

Для снижения уровня пульсаций выходного напряжения целесообразно применить LC-фильтр, аналогичный используемому в схеме на рис. 2.

Импульсный стабилизатор напряжения с КПД преобразования 69...72%

Импульсный стабилизатор напряжения (рис. 6) состоит из узла запуска (R3, VD1, ѴТ1, VD2), источника опорного напряжения и устройства сравнения (DD1.1, R1), усилителя постоянного тока (ѴТ2, DD1.2, ѴТ5), транзисторного ключа (ѴТЗ, ѴТ4), индуктивного накопителя энергии с коммутирующим диодом (VD3, L2) и фильтров — входного (L1, С1, С2) и выходного (С4, С5, L3, С6). Частота переключения индуктивного накопителя энергии в зависимости от тока нагрузки находится в пределах 1,3...48 кГц.

Рис. 6. Схема импульсного стабилизатора напряжения с КПД преобразования 69...72%.

Все катушки индуктивности L1 — L3 одинаковы и намотаны в броневых магнитопроводах Б20 из феррита 2000НМ с зазором между чашками около 0,2 мм.

Номинальное выходное напряжение 5 В при изменении входного от 8 до 60 б и КПД преобразования 69...72%. Коэффициент стабилизации — 500.

Амплитуда пульсаций выходного напряжения при токе нагрузки 0,7 А — не более 5 мВ. Выходное сопротивление — 20 мОм. Максимальный ток нагрузки (без теплоотводов для транзистора VT4 и диода VD3) — 2 А.

Импульсный стабилизатор напряжения на 12В

Импульсный стабилизатор напряжения (рис. 6.7) при входном напряжении 20...25 В обеспечивает на выходе стабильное напряжение 12 В при токе нагрузки 1,2 А.

Пульсации на выходе до 2 мВ. Благодаря высокому КПД в устройстве не используются теплоотводы. Индуктивность дросселя L1 — 470 мкГч.

Рис. 7. Схема импульсного стабилизатора напряжения с малыми пульсациями.

Аналоги транзисторов: ВС547 — КТ3102А] ВС548В — КТ3102В. Приблизительные аналоги транзисторов ВС807 — КТ3107; BD244 — КТ816.

Импульсные стабилизаторы напряжения в последнее время становятся достаточно популярными благодаря компактным размерам и сравнительно высокому КПД и ближайшем будущем они полностью вытеснят старые и добрые аналоговые схемы.
Сейчас за пару долларов в Китае можно приобрести готовый модуль DC-DC преобразователя, который обеспечивает регулировку выходного напряжения, имеет возможность ограничивать ток и работает в довольно широком диапазоне входных напряжений.

Наиболее популярная микросхема, на которой строятся такие стабилизаторы – LM2596. Максимальное напряжение до 35 вольт, при токе до 3-х ампер. Работает микросхема в импульсном режиме, нагрев на ней не очень сильный при довольно внушительных нагрузках, компактна и стоит копейки.

Добавлением ОУ можно получить и ограничение выходного тока, скажу больше – стабилизацию тока, иными словами – ток будет держаться на уровне заданного не зависимо от напряжения.
Такие модули довольно компактны и можно встроить в любую самодельную конструкцию блока питания и зарядного устройства. Подключив на выход цифровой вольтметр мы будем знать какое напряжение на выходе. .

На самой плате имеются подстроечные резисторы для ограничения выходного тока и регулировки напряжения. Диапазон входного напряжения позволит внедрять такой модуль в автомобиль, напрямую подключив к бортовой сети 12 Вольт. Что это нам даст?

  1. 1) Универсальное зарядное устройство с большим током. Можно заряжать любые смартфоны, планшеты, плееры и прочие проигрыватели, навигаторы и портативные охранные системы, притом к устройству можно подключать скажем 2-3 смартфона одновременно и все они будут одинаково хорошо заряжаться.

  2. 2) Подключите устройство скажем к адаптеру ноутбука, выставьте на выходе 14-15 Вольт и смело заряжайте аккумулятор! 3 ампера довольно немалый ток для зарядки автомобильного аккумулятора, правда саму плату преобразователя придется установить на небольшой радиатор.

С полезностью платы однозначно нельзя поспорить, да и стоит копейки (не более 2-3 долларов США). Эту же плату можно изготовить в домашних условиях, при наличии определенных компонентов, правда готовый модуль стоит куда дешевле, чем отдельные компоненты.

Сдвоенный операционный усилитель, на первом элементе оу построен узел ограничения тока, на втором – индикация. Сама микросхема с обвязкой, силовой дроссель, который может быть намотан самостоятельно и пара регуляторов. Схема почти не перегревается при малых токах – но маленький теплоотвод не помешает.

Схема очень простого мощного импульсного регулируемого стабилизатора напряжения с высоким КПД

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “ “

Сегодня мы с вами рассмотрим схему мощного импульсного регулируемого стабилизатора напряжения . Данная схема может применяться как для установки в радиолюбительские устройства с фиксированным выходным напряжением, так и в блоках питания с регулируемым выходным напряжением. Хотя схема очень проста, но она обладает достаточно хорошими характеристиками и доступна для повторения радиолюбителями с любой начальной подготовкой.

Основой данного стабилизатора является специализированная микросхема LM-2596T-ADJ , которая как-раз и предназначена для построения импульсных стабилизаторов регулируемого напряжения. Микросхема имеет встроенную защиту по выходному току и тепловую защиту. Кроме того в схеме имеется диод D1 – диод Шоттки типа 1N5822 и дроссель заводского изготовления (в принципе, его можно изготовить самостоятельно) индуктивностью 120 микрогенри. Конденсаторы С1 и С2 – на рабочее напряжение не ниже 50 вольт, резистор R1 мощностью 0,25 ватт.

Для получения регулируемого напряжения на выходе, необходимо к контактам 1 и 2 подключить переменный резистор (с как можно меньшей длиной проводов подключения). Если необходимо на выходе получить фиксированное напряжение, то вместо переменного резистора устанавливается постоянный, номинал которого подбирается опытным путем.

Кроме того, в серии LM-2596 есть фиксированные стабилизаторы на напряжение 3,3 В, 5В и 12 В схема подключения которых еще проще (можно просмотреть в даташите).

Технические характеристики:

Как видите характеристики для применения этой схемы в блоке питания довольно приличны (по даташиту выходное напряжение регулируется в пределах 1,2-37 вольт). Эффективность стабилизатора при входном напряжение 12 вольт, выходном – 3 вольта и токе нагрузки 3 ампера – составляет 73%. При изготовлении данного стабилизатора нельзя забывать, что чем больше входное напряжение и меньше выходное – допустимый ток нагрузки будет уменьшаться, поэтому данный стабилизатор необходимо установить на радиатор с площадью не менее 100 кв.см. Если схема будет работать при небольших токах нагрузки, то радиатор ставить необязательно.

Ниже приводятся внешний вид основных деталей, их примерная стоимость в интернет-магазинах и расположение деталей на плате.

Исходя из схемы расположения деталей, самостоятельное изготовление печатной платы не представляет трудностей.

Данная схема может работать в режиме стабилизации выходного тока, что позволяет применять ее для заряда аккумуляторных батарей, питания мощного или группы мощных светодиодов и т.п.

Для включения схемы в режим стабилизации тока, необходимо параллельно резистору R1 установить резистор, номинал которого определяется по формуле: R=1,23/I

Себестоимость данной схемы составляет приблизительно 300 рублей, что как минимум на 100 рублей дешевле покупки готового изделия.

Данный обзор посвящён модулю импульсного стабилизатора, который предлагается интернет-магазинами под названием "5A Lithium Charger CV CC Buck Step Down Power Module LED Driver ". Таким образом модуль представляет собой импульсный понижающий преобразователь, предназначенный для зарядки литий-ионных аккумуляторов в режимах CV (постоянное напряжение) и СС (постоянный ток), а также для питания светодиодов. Стоит данное устройство около 2-х USD. Конструктивно модуль представляет собой печатную плату, на которой установлены все элементы, включая сигнальные светодиоды и органы регулировки. Внешний вид модуля представлен на рис.1.

Чертёж печатной платы представлен на рис. 2.

Согласно спецификации изготовителя модуль имеет следующие технические характеристики:

  • Входное напряжение 6-38 В постоянного тока.
  • Выходное напряжение регулируемое 1.25-36 В постоянного тока.
  • Выходной ток 0-5 А (регулируемый).
  • Мощность в нагрузке до 75 ВА.
  • КПД более 96%.
  • Имеется встроенная защита от перегрева и короткого замыкания в нагрузке.
  • Размеры модуля 61.7х26.2х15 мм.
  • Масса 20 грамм.

Сочетание невысокой цены, малых размеров и высоких технических характеристик вызвало у автора интерес и желание экспериментально определить основные характеристики модуля.
Производитель не приводит схему электрическую принципиальную, по этому её пришлось рисовать самостоятельно. Результат этой работы представлен на рис. 3.

Основой устройства является микросхема DA2 XL4015, представляющая собой оригинальную китайскую разработку. Данная микросхема весьма похожа на популярную LM2596, но отличается улучшенными характеристиками. Видимо это достигается применением в качестве силового ключа мощного полевого транзистора. Описание этой микросхемы приведено в Л1. В данном устройстве микросхема включена в полном соответствии с рекомендациями изготовителя. Переменный резистор “CV” является регулятором выходного напряжения. Цепь регулируемого ограничения выходного тока выполнена на операционном усилителе DA3.1. Этот усилитель сравнивает падение напряжения на токоизмерительном резисторе R9 с регулируемым напряжением, снимаемым с переменного резистора “CC”. С помощью этого резистора можно задать желаемый уровень ограничения тока в нагрузке стабилизатора.

Если заданное значение тока будет превышено, то на выходе усилителя появится сигнал высокого уровня, красный светодиод HL2 откроется и напряжение на входе 2 микросхемы DA2 повысится, что приведёт к снижению напряжения и тока на выходе стабилизатора. Кроме того свечение HL2 будет сигнализировать о том, что модуль работает в режиме стабилизации тока (СС). Конденсатор С5 должен обеспечивать устойчивость узла регулирования тока.

На втором операционном усилителе DA3.2 собран сигнализатор снижения тока в нагрузке до значения менее 9% от заданного максимального тока. Если ток превышает указанное значение, то светится синий светодиод HL3, в противном случае светится зелёный светодиод HL1. При зарядке литий-ионных аккумуляторов снижение зарядного тока является одним из признаков окончания зарядки.
На микросхеме DA1 собран стабилизатор с выходным напряжением 5В. Это напряжение используется для питания операционного усилителя DA3, также оно используется для формирования опорного напряжения ограничителя тока и сигнализатора снижения тока.

Падение напряжения на токоизмерительном резисторе никак не компенсируется, по этому с ростом тока в нагрузке выходное напряжение стабилизатора снижается. Чтобы уменьшить данный недостаток величина токоизмерительного резистора выбрана достаточно маленькой (0.05 Ома). Из-за этого дрейф операционного усилителя DA3 может вызвать заметную нестабильность как уровня ограничения выходного тока так и уровня срабатывания сигнализатора.
Испытания модуля показали, что выходное сопротивление стабилизатора в режиме стабилизации напряжения (CV) практически полностью определяется токоизмерительным резистором и составляет около 0.06 Ома.
Коэффициент стабилизации напряжения около 400.
Для оценки тепловыделения на вход модуля было подано напряжение 12В. На выходе было установлено напряжение 5В при нагрузке сопротивлением 2.5 Ома (ток 2А). Через 30 минут микросхема DA2, дроссель L1 и диод VD1 нагрелись до 71, 64 и 48 градусов Цельсия соответственно.

Работа в режиме стабилизации тока в нагрузке (СС) сопровождалась переходом микросхемы DA2 в режим формирования пачек импульсов. Частота следования и длительность пачек изменялись в широких пределах в зависимости от величины тока. Эффект стабилизации тока при этом имел место, но пульсации на выходе модуля существенно возрастали. Кроме того работа устройства в режиме СС сопровождалась довольно громким писком, источником которого являлся дроссель L1.
Работа сигнализатора снижения тока нареканий не вызвала. Модуль успешно выдерживал короткое замыкание в нагрузке.

Таким образом модуль работоспособен как в режиме CV, так и в режиме СС, но при его использовании следует учитывать вышеописанные особенности.
Данный обзор написан по результатам исследования одного экземпляра устройства, что делает полученные результаты чисто ориентировочными.
По мнению автора описанный импульсный стабилизатор может быть с успехом использован, если требуется дешёвый, компактный источник питания с удовлетворительными характеристиками.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
DA1 Линейный регулятор

LM317L

1 В блокнот
DA2 Микросхема XL4015 1 В блокнот
DA3 Операционный усилитель

LM358

1 В блокнот
VD1 Диод Шоттки

SK54

1 В блокнот
HL1 Светодиод Зеленый 1 В блокнот
HL2 Светодиод Красный 1 В блокнот
HL3 Светодиод Синий 1 В блокнот
С1, С6 Электролитический конденсатор 220 мкФ 50 В 2 В блокнот
С2-С4, С7 Конденсатор 0.47 мкФ 4 В блокнот
С5 Конденсатор 0.01 мкФ 1 В блокнот
R1 Резистор

680 Ом

1 В блокнот
R2 Резистор

220 Ом

1 В блокнот
R3 Резистор

330 Ом

1 В блокнот
R4 Резистор

18 кОм

1 В блокнот
R7 Резистор

100 кОм

1 В блокнот
R8 Резистор

10 кОм

1

Рассматриваемая сегодня микросхема - это регулируемый DC-DC преобразователь напряжения, или просто понижающий регулируемый стабилизатор тока 40 вольт на входе и от 1,2 до 35 В на выходе. LM2576 требует входное питание около 40-50 в постоянного тока. Так как она может держать токи до 3-х ампер, LM2576 работает как импульсный стабилизатор, способный управлять нагрузкой 3 А с минимальным количеством компонентов и небольшим радиатором. Цена микросхемы LM2576 составляет примерно 140 рублей.

Принципиальная схема стабилизатора


Особенности схемы

  • Выходное регулируемое напряжение 1,2 - 35 В и низкий уровень пульсаций
  • Потенциометр для плавной регулировки выходного напряжения
  • На плате есть мостовой выпрямитель напряжения переменного тока
  • Светодиодная индикация входного питания
  • Размеры печатной платы 70 х 63 мм


Предназначена схема для настольных блоках питания, зарядных устройств для батарей, как светодиодный драйвер. Далее 2 варианта исполнения - в стандартном и планарном виде:



Почему в таких источниках стабилизированного питания нельзя применять простые параметрические стабилизаторы типа LM317? Потому что рассеиваемая мощность на напряжении 30 В 3 А будет несколько десятков ватт - потребуется огромный радиатор и кулер. А вот при импульсной стабилизации выделяемая на микросхеме мощность почти в 10 раз меньше. Поэтому с LM2576 получаем небольшой и мощный, универсальный регулируемый стабилизатор напряжения.